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• Flash results from LA-UR-18-30344
Results presented in conference poster:
T. Byvank, S. Langendorf, S. C. Hsu, P. Tzeferacos, Y. C. F. Thio, 
Assessment of High-β Magnetized Target Formation and Plasma-Liner 
Nonuniformities in Plasma-Jet-Driven Magneto-Inertial Fusion using the 
FLASH Code, 60th Annual Meeting of the American Physical Society 
Division of Plasma Physics (APS DPP 2018), Poster Session GP11, 
Portland, OR, November 6, 2018.



Background: Target Formation Quantities of Interest
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Plasma Beta, β = ΣjnjkTj/(B2/2µ0) ~ nT/B2

• Ratio of thermal pressure to magnetic pressure
• GOAL: want β > 1, thermally/flow-dominated
àHigh β limits MHD instabilities

(Ion) Magnetization, ωiτii = ωi/νii ~ BT3/2/n
• Ratio of ion cyclotron frequency to ion-ion collision frequency
• GOAL: want ωτ >1, magnetized (*despite high-β)
àHigh ωτ reduces thermal transport ⊥ to B, enhances confinement time

Lambda Gun, λgun = µ0I/Ψpol = 2πrBθ/∫$
%2πr′Bz&'′ ~ Bθ/rcharBz

• In preliminary studies, we have BθMAX = 0.7 T and we vary Bz0 = 0.004 – 0.4 T

β > 1, ωτ >1 is an interesting regime: thermally dominated and magnetized



Background: Lambda Gun Parameter
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Varying λgun will scan parameter space to create the β > 1, ωτ >1 plasma

Spheromak
λgun > λcrit
β < 1

Goal for Target
∞ > λgun > λcrit
β > 1, ωτ > 1

Unmagnetized
Plasma Jet
λgun =∞
β >> 1, ωτ << 1

Tangled magnetic field
(length scale ℓ >> electron mean free path λmfp,e)

can further reduce electron transport
and increase confinement time 

: Plasma
Blue: Outside B

: Poloidal B
: Toroidal B

Optical
Emission
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Wikihelper2134, 2017 Hsu 2018 JFE, DOI: 10.1007/s10894-018-0168-z
Hsu 2012 PoP
DOI: 10.1063/1.4773320



Simulation Setup: Target Formation
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1) Plasma jets (H, 10 eV, 5*1015 cm-3) launched by Bθ(r,t) ~ sin(r)*sin2(t)
2) Jets advect Bpol(r,z)
3) Merging jets form magnetized target
• FLASH Simulation: 2D azimuthally symmetric (r-z plane) of 2 colliding jets
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Results: Target Formation– Time Evolution, Single Jet
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Results: Target Formation– Time Evolution, Collision

2/27/19 |   7Los Alamos National Laboratory

Density
(cm-3)

6*1013

1*1015

3*1014

4.95 µs
1 m

5.1 µs 5.4 µs

λgun= 9 cm-1



Results: Target Formation– Varying λgun

2/27/19 |   8Los Alamos National Laboratory

Note: here, est. λcrit ~ 3/rchar = 0.6 cm-1

Various λgun values can create the β > 1, ωτ >1 plasma target
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Simulation Setup: Liner Nonuniformities
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2D Discrete Jets 2D Uniform Shell 3D Discrete Jets
(60)

• Keeping total liner mass constant, 50 km/s (inward), 1.5 eV, 1017 cm-3

• Initial target: 100 eV, 1018 cm-3 à 3.2*104 bar

: Chamber vacuum (He), Blue: Liner (Ar), : Target (H)

72 cm

15 cm jet length 9.6 cm shell thickness

Kim 2013 PoP
DOI: 10.1063/1.4789887



Results: Liner Nonuniformities– Shocks 
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Merging of discrete jets creates shock structures. Question is: to what 
extent do these nonuniformities degrade the target compression?
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Results: Liner Nonuniformities– Target Compression
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Want small liner thickness so it acts like a piston to compress the target. 

2D Discrete Jets– Pressure PMAX/Pt0 = 22 at 6.9 µs

2D Uniform Shell– Pressure PMAX/Pt0 = 25 at 6.1 µs

1 µs 4 µs 6 µs 7 µs

1 µs 4 µs 6 µs 7 µs



USim studies of 2D MHD target compressions

•Task 4.2.5:  2D PJMIF simulations 

- We have the first simulations with axial magnetic field, consistent with 
(for example) embedding the target in a solenoidal field 
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USim studies of 2D MHD target compressions

•Task 4.2.5:  2D PJMIF simulations 

- LANL supercomputing resources allowed us to run with sub-mm grid 

resolution with less than 30 min turnaround time


